Clusterização de dados K-Means na biblioteca scikit-learn

A clusterização de dados é uma técnica que visa fazer agrupamentos automáticos de dados, levando em consideração o grau de semelhança, tem por objetivo agrupar através de aprendizado não supervisionado casos de uma base em k grupos, também denominados clusters, a classificação de dados surgiu com a necessidade de separar os dados em determinados grupos com semelhanças de atributos.

Existem diferentes formas de realizar a clusterização de dados, o scikit-learn por exemplo, é uma biblioteca para a linguagem python que disponibiliza de vários algoritmos para clusterização de dados, um dos mais conhecidos é o algoritmo K-Means.

Continue lendo “Clusterização de dados K-Means na biblioteca scikit-learn”

Google Speech-to-text API

Google Speech-To-Text é um entre os diversos serviços oferecidos pela Google Cloud e realiza a conversão de áudios para texto utilizando modelos de redes neurais e machine learning. A medida que o Speech-to-text é utilizado, evolui com velocidade e hoje, pouco tempo depois de passar do modelo BETA em abril de 2017, já possui suporte para o reconhecimento de mais de 120 idiomas.

Continue lendo “Google Speech-to-text API”

Utilização de NodeMCU em projetos IoT

Desde o princípio a tecnologia vem passando por crescente transformação. O que antes eram computadores gigantes que ocupavam salas inteiras apenas para fazer simples cálculos, se transformou em dispositivos indispensáveis para o dia-a-dia. São eles: celulares, notebooks, o computador de bordo do carro, a TV smart, o aspirador de pó inteligente, entre muitos outros. Esta grande massa de dispositivos geralmente está conectada à internet. Mas você já parou para pensar como isso funciona? Quais dispositivos podem ser conectados? Eu posso montar um projeto IoT? Aí está mais uma palavra que ouvimos muito hoje em dia. IoT significa Internet of Things (Internet das Coisas), que podemos entender como coisas conectadas na internet.

Continue lendo “Utilização de NodeMCU em projetos IoT”

Frameworks ORM para bancos não relacionais?

Existem dois tipos de bancos de dados: relacional e não relacional. Os dois bancos podem ser utilizados de formas distintas com diferentes frameworks, podendo-se utilizar o tipo de banco de dados e seu respectivo framework variando entre situações.

O banco de dados relacional trabalhará de forma que tabelas possam se relacionar e formar uma rede de tabelas com dados utilizando frameworks ORM. O banco de dados não relacional em conjunto com o framework ODM deverá ser utilizado para casos com informações menos complexas que exigem todas as informações em um único documento possibilitando uma grande massa de dados.

Continue lendo “Frameworks ORM para bancos não relacionais?”